Hierarchical Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms

Jean-Noël Quintin, Khalid Hasanov, Alexey Lastovetsky

Heterogeneous Computing Laboratory School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland http://hcl.ucd.ie

2013

Problem Outline

Motivation and Introduction Previous Work: SUMMA

Our Work: HSUMMA

Problem Outline

Motivation and Introduction Previous Work: SUMMA Our Work: HSUMMA

Experiments

Experiments on Grid5000 Experiments on BlueGene

Problem Outline

Motivation and Introduction

Previous Work: SUMMA Our Work: HSUMMA

Experiments

Experiments on Grid5000 Experiments on BlueGene

Motivation

- Majority of HPC algorithms for scientific applications were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
 - In June 1995, the number of cores in the top 10 supercomputers ranged from 42 to 3680 (see http://www.top500.org/)

Motivation

- Majority of HPC algorithms for scientific applications were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
 - In June 1995, the number of cores in the top 10 supercomputers ranged from 42 to 3680 (see http://www.top500.org/)
- Nowadays, in June 2013, this number ranges from 147,456 to 3,120,000

Motivation

The increasing scale of the HPC platforms creates new research questions which needs to be solved:

- Scalability
- Communication cost
- Energy efficiency
- etc.

Introduction

We focus on the communication cost of scientific applications on large-scale distributed memory platforms.

- Example application: Parallel Matrix Multiplication.
- Why Matrix Multiplication?
 - Matrix multiplication is important in its own rights as a computational kernel of many scientific applications.
 - It is a popular representative for other scientific applications
 - If an optimization method works well for matrix multiplication, it will also work well for many other relative scientific applications

Introduction

- Example algorithm:
 - SUMMA Scalable Universal Matrix Multiplication Algorithm.
 - Introduced by Robert A. van de Geijn and Jerrell Watts. University of Texas at Austin, 1995.
 - Implemented in ScaLAPACK.

Problem Outline

Motivation and Introduction

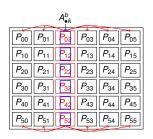
Previous Work: SUMMA

Our Work: HSUMMA

Experiments

Experiments on Grid5000 Experiments on BlueGene

SUMMA



,	P ₀₀	P ₀₁	P ₀₂	P ₀₃	P_{04} P_{14} P_{24} P_{34} P_{44} P_{54}	P ₀₅
AĪ.	P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅
B _k •	2 0	P ₂₁	P ₂₂	P_{23}	P ₂₄	P ₂₅
H2	P ₃₀	P ₃₁	P ₃₂	P ₃₃	P ₃₄	P ₃₅
	P ₄₀	P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅
1	P ₅₀	P ₅₁	P ₅₂	P ₅₃	P ₅₄	P ₅₅

- Number of steps: $\frac{n}{b}$ ($n \times n$ matrices, b block size, $\sqrt{P} \times \sqrt{P}$ processors grid, P = 36)
- The pivot column $A_{\bullet k}^b$ of $\frac{n}{\sqrt{P}} \times b$ blocks of matrix A is broadcast horizontally.
- ► The pivot row $B_{k\bullet}^b$ of $b \times \frac{n}{\sqrt{p}}$ blocks of matrix B is broadcast vertically.
- Then, each $\frac{n}{\sqrt{P}} \times \frac{n}{\sqrt{P}}$ block c_{ij} of matrix C is updated, $c_{ij} = c_{ij} + a_{ik} \times b_{kj}$.
- Size of data broadcast vertically and horizontally in each step: $2\frac{n}{\sqrt{P}} \times b$

Outline

Problem Outline

Motivation and Introduction Previous Work: SUMMA

Our Work: HSUMMA

Experiments

Experiments on Grid5000 Experiments on BlueGene

Our Contribution

- We introduce application level hierarchical optimization of SUMMA
- Hierarchical SUMMA (HSUMMA) is platform independent optimization of SUMMA
- We theoretically and experimentally show that HSUMMA reduces the communication cost of SUMMA

SUMMA vs HSUMMA. Arrangement of Processors

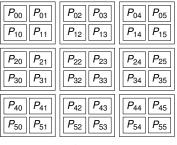
P ₀₀	P ₀₁	P ₀₂	P ₀₃	P ₀₄	P ₀₅
P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅
P_{20}	P ₂₁	P ₂₂	P ₂₃	P ₂₄	P ₂₅
P_{30}	P ₃₁	P ₃₂	P ₃₃	P ₃₄	P ₃₅
P_{40}	P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅
P ₅₀	P ₅₁	P ₅₂	P ₅₃	P ₅₄	P ₅₅

SUMMA

SUMMA vs HSUMMA. Arrangement of Processors

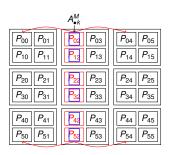
P ₀₀	P ₀₁	P ₀₂	P ₀₃	P ₀₄	P ₀₅
P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅
P ₂₀	P ₂₁	P ₂₂	P ₂₃	P ₂₄	P ₂₅
P ₃₀	P ₃₁	P ₃₂	P ₃₃	P ₃₄	P ₃₅
P ₄₀	P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅
P ₅₀	P ₅₁	P ₅₂	P ₅₃	P ₅₄	P ₅₅

SUMMA



HSUMMA

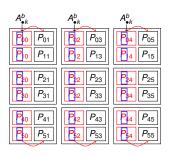
Horizontal Communications Between Groups in HSUMMA



- ▶ P number of processors (P = 36)
- ▶ G number of groups (G = 9)
- ▶ $\sqrt{P} \times \sqrt{P}$ processors grid
- ▶ $\sqrt{G} \times \sqrt{G}$ grid of processor groups
- ► M block size between groups
- ▶ n/M number of steps
- ► Size of data broadcast horizontally in each step: $\frac{n \times M}{\sqrt{P}}$

The pivot column $A_{\bullet k}^M$ of $\frac{n}{\sqrt{P}} \times M$ blocks of matrix A is broadcast horizontally between groups

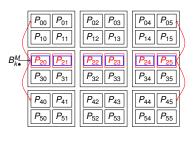
Horizontal Communications Inside Groups in HSUMMA



- $\frac{\sqrt{P}}{\sqrt{G}} \times \frac{\sqrt{P}}{\sqrt{G}}$ grid of processors inside groups
- ▶ b− block size inside one group
- ► *M/b*− steps inside one group
- ► n/M− steps between groups
- ► Size of data broadcast horizontally in each step: $\frac{n \times b}{\sqrt{P}}$

Upon receipt of the pivot column data from the other groups, the local pivot column $A^b_{\bullet k}$, $(b \le M)$ of $\frac{n}{\sqrt{P}} \times b$ blocks of matrix A is broadcast horizontally inside each group

Vertical Communications Between Groups in HSUMMA



- P number of processors (P = 36)
- G number of groups (G = 9)
- ▶ $\sqrt{P} \times \sqrt{P}$ processors grid
- ▶ $\sqrt{G} \times \sqrt{G}$ grid of processor groups
- ► *M* block size between groups
- ▶ n/M number of steps
- ► Size of data broadcast vertically in each step: $\frac{n \times M}{\sqrt{P}}$

The pivot row $B_{k\bullet}^M$ of $M \times \frac{n}{\sqrt{p}}$ blocks of matrix B is broadcast vertically between groups

Vertical Communications Inside Groups in HSUMMA

- ▶ $\frac{\sqrt{P}}{\sqrt{G}} \times \frac{\sqrt{P}}{\sqrt{G}}$ grid of processors
- ▶ b− block size inside one group
- ► M/b— steps inside one group
- ▶ n/M− steps between groups
- ► Size of data broadcast vertically in each step: $\frac{n \times b}{\sqrt{P}}$

Upon receipt of the pivot row data from the other groups, the local pivot row $B_{\bullet k}^b$ of $b \times \frac{n}{\sqrt{P}}$, $(b \le M)$ blocks of matrix B is broadcast vertically inside each group

Communication Model to Analyse SUMMA and HSUMMA

Time of sending of a message of size *m* between two processors:

$$\alpha + m\beta \tag{1}$$

Here,

- α -latency
- \triangleright β -reciprocal bandwith
- m -message size

General Broadcast Model to Analyse SUMMA and HSUMMA

We use a general broadcast model for all homogeneous broadcast algorithms such as

- flat
- binary
- binomial
- linear
- scatter-allgather broadcast

$$T_{bcast}(m, p) = L(p) \times \alpha + m \times W(p) \times \beta$$
 (2)

General Broadcast Model

$$T_{bcast}(m, p) = L(p) \times \alpha + m \times W(p) \times \beta$$

Assumptions:

- L(1) = 0 and W(1) = 0
- ▶ L(p) and W(p) are monotonic and differentiable functions in the interval (1, p),
- ► their first derivatives are constants or monotonic in the interval (1, p)

SUMMA and HSUMMA with General Broadcast Model

SUMMA:

$$T_{\mathcal{S}}(n,p) = 2\left(\frac{n}{b} \times L(\sqrt{p})\alpha + \frac{n^2}{\sqrt{p}} \times W(\sqrt{p})\beta\right)$$
(3)

HSUMMA:

$$T_{HS}(n, p, G) = T_{HS_1}(n, p, G) + T_{HS_b}(n, p, G)$$
 (4)

Here $G \in [1, p]$ and we take b = M for simplicity and

T_{HSi} is the latency cost:

$$T_{HS_j}(n, p, G) = 2\frac{n}{b} \times \left(L(\sqrt{G}) + L(\frac{\sqrt{p}}{\sqrt{G}})\right) \alpha$$
 (5)

T_{HS_b} is the bandwidth cost:

$$T_{HS_b}(n, p, G) = 2\frac{n^2}{\sqrt{p}} \times \left(W(\sqrt{G}) + W(\frac{\sqrt{p}}{\sqrt{G}})\right)\beta$$
 (6)

Optimal Number of Groups in HSUMMA with General Broadcast Model

Derivative of the communication cost function of HSUMMA with general broadcast model:

$$\frac{\partial T_{HS}}{\partial G} = \frac{n}{b} \times L_1(\rho, G)\alpha + \frac{n^2}{\sqrt{\rho}} \times W_1(\rho, G)\beta \tag{7}$$

Here, $L_1(p, G)$ and $W_1(p, G)$ are defined as follows:

$$L_1(p,G) = \left(\frac{\partial L(\sqrt{G})}{\partial \sqrt{G}} \times \frac{1}{\sqrt{G}} - \frac{\partial L(\frac{\sqrt{p}}{\sqrt{G}})}{\partial \frac{\sqrt{p}}{\sqrt{G}}} \times \frac{\sqrt{p}}{G\sqrt{G}}\right)$$
(8)

$$W_1(p,G) = \left(\frac{\partial W(\sqrt{G})}{\partial \sqrt{G}} \times \frac{1}{\sqrt{G}} - \frac{\partial W(\frac{\sqrt{p}}{\sqrt{G}})}{\partial \frac{\sqrt{p}}{\sqrt{G}}} \times \frac{\sqrt{p}}{G\sqrt{G}}\right) \tag{9}$$

If $G = \sqrt{P}$ then $L_1(p, G) = 0$ and $W_1(p, G) = 0$. Thus, $\frac{\partial T_{HS}}{\partial G} = 0$

Optimal Number of Groups in HSUMMA with General Broadcast Model

- ▶ HSUMMA has extremum in $G \in (1, P)$
- $G = \sqrt{P}$ is the extremum point.
- ▶ Depending on α and β :
 - This extremum can be minimum which means HSUMMA always outperforms SUMMA.
 - Or maximum which means HSUMMA has the same performance as SUMMA.

Theoretical Prediction by Using Scatter-Allgather Broadcast

Algorithm	Comp. Cost	Latenc	Bandwidth Factor		
		inside groups	between groups	inside groups	between groups
SUMMA	2n³ P	$(\log_2(p) + 2$	$4\left(1-\frac{1}{\sqrt{\rho}}\right)\times\frac{n^2}{\sqrt{\rho}}$		
HSUMMA	2n³ p	$\left(\log_2\left(\frac{p}{G}\right) + 2\left(\frac{\sqrt{p}}{\sqrt{G}} - 1\right)\right) \times \frac{n}{b}$	$\left(\log_2\left(G\right)+2\left(\sqrt{G}-1\right)\right)\times\frac{n}{M}$	$4\left(1-\frac{\sqrt{G}}{\sqrt{p}}\right)\times\frac{n^2}{\sqrt{p}}$	$4\left(1-\frac{1}{\sqrt{G}}\right) imes \frac{n^2}{\sqrt{p}}$

Optimal Number of Groups with Scatter-Allgather Broadcast

$$\frac{\partial T_{HS_V}}{\partial G} = \frac{G - \sqrt{p}}{G\sqrt{G}} \times \left(\frac{n\alpha}{b} - 2\frac{n^2}{p} \times \beta\right)$$
 (10)

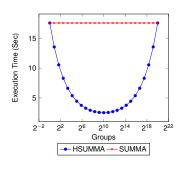
If
$$G = \sqrt{p}$$
 then $\frac{\partial T_{HS_V}}{\partial G} = 0$.

- If $\frac{\alpha}{\beta} > 2\frac{nb}{p}$ then $G = \sqrt{p}$ is the minimum of T_{HS} .
- If $\frac{\alpha}{\beta} < 2 \frac{nb}{p}$ then $G = \sqrt{p}$ is the maximum of T_{HS} . In this case the function gets its minimum at either G = 1 or G = p.

Optimal Number of Groups with Scatter-Allgather Broadcast

Algorithm	Comp. Cost	Latenc	Bandwidth Factor			
		inside groups between groups		inside groups	between groups	
SUMMA	2 <i>n</i> ³ <i>p</i>	$(\log_2(p) + 2(\sqrt{p} - 1)) \times \frac{n}{b}$		$4\left(1-\frac{1}{\sqrt{p}}\right) imes \frac{n^2}{\sqrt{p}}$		
HSUMMA	2 <i>n</i> ³ <i>p</i>	$\left(\log_2\left(\frac{p}{G}\right) + 2\left(\frac{\sqrt{p}}{\sqrt{G}} - 1\right)\right) \times \frac{n}{b}$	$\left(\log_2\left(G\right) + 2\left(\sqrt{G} - 1\right)\right) \times \frac{n}{M}$	$4\left(1-\frac{\sqrt{G}}{\sqrt{p}}\right)\times\frac{n^2}{\sqrt{p}}$	$4\left(1-\tfrac{1}{\sqrt{G}}\right)\times \tfrac{n^2}{\sqrt{p}}$	
$HSUMMA(G = \sqrt{p}, b = \mathit{M})$	2n ³	$(\log_2(p) + 4(\sqrt[4]{p} - 1)) \times \frac{n}{p}$		$8\left(1-\frac{1}{\sqrt[4]{p}}\right)\times\frac{n^2}{\sqrt{p}}$		

Theoretical Prediction on Future Exascale Platforms by Using Scatter-Allgather Broadcast



- Total flop rate (γ) : 1*E*18 flops
- Latency: 500 ns,
- Bandwidth: 100 GB/s
- Problem size: $n = 2^{22}$,
- Number of processors: $p = 2^{20}$
- ▶ Block size: b = M = 256

Prediction of SUMMA and HSUMMA on Exascale.
(The parameters were taken from: Report on Exascale Architecture. IESP Meeting. April 12, 2012)

Problem Outline

Motivation and Introduction Previous Work: SUMMA Our Work: HSUMMA

Experiments

Experiments on Grid5000 Experiments on BlueGene

Experimental platforms

- ► The experiments were carried out on Graphene cluster of Nancy site of Grid5000 platform,
- On 8, 16, 32, 64 and 128 cores and
- On IBM BlueGene on 1024, 2048, 4096, 8192 and 16384 cores

Problem Outline

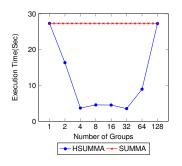
Motivation and Introduction Previous Work: SUMMA Our Work: HSUMMA

Experiments

Experiments on Grid5000

Experiments on BlueGene

Summa vs HSUMMA on Grid5000 with MPICH

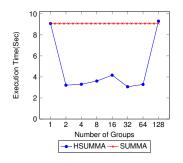


HSUMMA and SUMMA on Grid5000 with MPICH-2.

b = M = 64, n = 8192 and p = 128.

7.75 times reduction of the execution time.

Summa vs HSUMMA on Grid5000 with MPICH

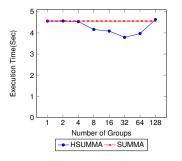


HSUMMA and SUMMA on Grid5000 with MPICH-2.

b = M = 256, n = 8192 and p = 128.

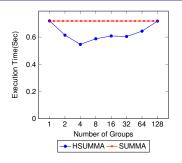
2.96 times reduction of the execution time.

Summa vs HSUMMA on Grid5000 with OpenMPI on Ethernet



HSUMMA and SUMMA on Grid5000 with OpenMPI on Ethernet. b = M = 256, n = 8192 and p = 128. 16.8 percent reduction of the execution time.

Summa vs HSUMMA on Grid5000 with OpenMPI on Infiniband



HSUMMA and SUMMA on Grid5000 with OpenMPI on Infiniband. b = M = 256, n = 8192 and p = 128. 24 percent reduction of the execution time.

Problem Outline

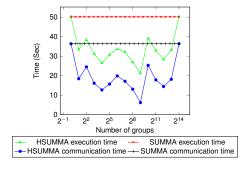
Motivation and Introduction Previous Work: SUMMA Our Work: HSUMMA

Experiments

Experiments on Grid5000

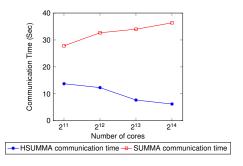
Experiments on BlueGene

Summa vs HSUMMA on BlueGene



SUMMA and HSUMMA on BG/P. Execution and communication time. b = M = 256, n = 65536 and p = 16384. 2.08 times reduction of the execution time. 5.89 times reduction of the communication time.

SUMMA and HSUMMA Communication Time



SUMMA and HSUMMA on BG/P. Communication time. b = M = 256 and n = 65536

Summary

Improvement over SUMMA:

- Hierarchical SUMMA has theoretically better communication time and thus less execution time than SUMMA
- 2.08 times less communication time on 2048 cores
- 5.89 times less communication time on 16384 cores
- 1.2 times less overall execution time on 2048 cores
- 2.36 times less overall execution time on 16384 cores

Questions?

